Широкий вплив вилучення кукурудзиння і пшеничної соломи для виробництва біопалива на продуктивність культур, здоров’я ґрунту і викиди парникових газів – огляд
Ключові слова:
біоекономіка, біоенергетика, адаптація до кліматичних змін, урожайність сільськогосподарських культур, природні ресурси, екологічна стійкість, пом’якшення викидів парникових газів, кругообіг поживних речовин, пожнивні залишки, здоров’я ґрунтуАнотація
Виробництво біопалива з пожнивних решток є загальновизнаним важливим компонентом розвитку біоекономіки, проте вилучення пожнивних залишків все ще викликає багато питань щодо стійкості сільськогосподарської системи. Тому в цьому дослідженні розглядається вилучення пожнивних рослинних залишків для виробництва біопалива з точки зору рослинництва, стану ґрунту й вивільнення парникових газів. У переважній більшості досліджень наведено мало доказів того, що управління залишками має довгостроковий вплив на врожайність зерна, за умови, якщо доступна волога не обмежена. В роки, коли волога не була обмежуючим фактором, у більшості досліджень при вилученні залишків кукурудзи й пшениці ≥ 90%, врожайність зерна була подібною або вищою, ніж без вилучення. І навпаки, у деяких дослідженнях, коли волога була обмеженою, урожайність зерна кукурудзи знижувалася до 21% із видаленням залишків ≥ 90%. Зміни в органічних фракціях ґрунту й балансі поживних речовин залежали, значною мірою, від кількості повернутих залишків, текстури й шару ґрунту, ухилу поля й способу обробітку ґрунту. Зменшення вмісту органічних фракцій відбувалось переважно при повному видаленні залишків, у шарі 15–30 см, у ґрунтах з дрібною текстурою. Ерозія ґрунту, стікання води й вимивання поживних речовин, таких як загальний азот (N) і екстрагований калій, зменшуються, коли видаляється не більше 30% пожнивних залишків. Вплив управління пожнивними залишками на насипну щільність ґрунту значно варіював залежно від шару ґрунту, управління залишками та системи обробітку ґрунту, з коефіцієнтом вилучення залишків менше 50%, що допомагає підтримувати агрегатну стійкість ґрунту. Зниження потоків CO2 і N2O, як правило, відбувалося після повного вилучення залишків. Повернення пшеничної соломи, як правило, збільшувало викиди CH4, а викиди CO2 і N2O були максимальними при поверненні пшеничної соломи в кількості 8 тон на гектар, незалежно від норми внесення N. Тому перед використанням рослинних залишків для виробництва біопалива слід завжди перевіряти, чи можна підтримувати нейтральну або позитивну стійкість в умовах конкретних ділянок.
Посилання
Abalos, D., A. Sanz-Cobena, L. Garcia-Torres, J.W. van Groenigen, and A. Vallejo. 2013. Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field. Plant Soil 364: 357–371.
Abendroth, L.J., R. W. Elmore, M. J. Boyer, and S. K. Marlay. 2011. Corn growth and development. PMR1009. Iowa State University Extension, Ames, Iowa.
Adeyemi, O., R. Keshavarz-Afshar, E. Jahanzad, M. L. Battaglia, Y. Luo, and A. Sadeghpour. 2020. Effect of wheat cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy 10, 1081, doi:10.3390/agronomy10081081
Adnan, M., S. Fahad, M. Zamin, S. Shah, I. A. Mian, S. Danish, M. Zafar-ul-Hye, M. L. Battaglia, R.M.M. Naz, B. Saeed, S. Saud, I. Ahmad, Z. Yue, M. Brtnicky, J. Holatko, R. Datta. 2020. Coupling Phosphate-Solubilizing Bacteria with Phosphorus Supplements Improve Maize Phosphorus Acquisition and Growth under Lime Induced Salinity Stress. Plants 9, 900. https://doi.org/10.3390/plants9070900
Amйzketa, E. 1999. Soil Aggregate Stability: A Review, J. Sustain. Agric. 14: 83–151.
Andrews, S.S. 2006. Crop Residue Removal for Biomass Energy Production: Effects on Soils and Recommendations. USDA-Natural Resource Conservation Service.At: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf (accessed: 8/12/2020).
Bahrani, M.J., M. Kheradnam, Y. Emam, H. Ghadiri, and M. T. Assad. 2002. Effect of tillage methods on wheat yield and yield components in continuous wheat cropping. Exper. Agric. 38: 389–395.
Baker, J.M., J. Fassbinder, and J. A. Lamb. 2014. The impact of corn stover removal on N2O emission and soil respiration: an investigation with automated chambers. BioEnergy Res. 7: 503–508.
Barber, S.A. 1979. Corn residue management and soil organic matter. Agron. J. 71:625–627.
Barros, M.V., R. Salvador, A.C. de Francisco, and C. M. Piekarski, 2020. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 131, 109958. https://doi.org/10.1016/j.rser.2020.109958.
Battaglia, M., J. Fike, W. Fike, A. Sadeghpour, and A. Diatta. 2019a. Miscanthus x giganteus biomass yield and quality in the Virginia Piedmont. Grassl Sci. 1–10. https://doi.org/10.1111/grs.12237.
Battaglia, M.L., G. Groover, and W. E. Thomason. 2017. Value and implications of corn stover removal from Virginia fields. Virginia Cooperative Extension Publication CSES-180.
Battaglia, M.L., G. Groover, and W. E. Thomason. 2018a. Harvesting and nutrient replacement costs associated with corn stover removal in Virginia. Virginia Cooperative Extension Publication. CSES-229NP.
Battaglia, M.L., C. Lee, and W. Thomason. 2018b. Corn yield components and yield responses to defoliation at different row widths. Agron. J. 110: 1–16. doi:10.2134/agronj2017.06.0322
Battaglia, M., C. Lee, W. Thomason, J. Fike and A. Sadeghpour. 2019b. Hail damage impacts on corn productivity: a review. Crop Sci. 59: 1–14. doi: 10.2135/cropsci2018.04.0285.
Battaglia, M.L., C. Lee, W. Thomason, and J. Van Mullekom. 2019c. Effects of corn row width and defoliation timing and intensity on canopy light interception. Crop Sci. 59: 1718–1731. doi: 10.2135/cropsci2018.05.0337.
Benjamin, J.G., A. D. Halvorson, D. C. Nielsen, and M. M. Mikha. 2008. Crop management effects on crop residue production and changes in soil organic matter in the central Great Plains. Agron. J. 102: 990–997.
Bernard, E., C. Chenu, J. Balesdent, P. Puget, and D. Arrouays. 1996. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 47: 495–503.
Blanco-Canqui, H., and R. Lal. 2009. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 73: 418–426.
Blanco-Canqui, H., R. Lal, R. C. Izaurralde, and L. B. Owens. 2006a. Rapid changes in soil carbon and structural properties due to stover removal from no-till corn plots. Soil Sc. 171: 468–482.
Blanco-Canqui, H., R. Lal, W. M. Post, and L. B. Owens. 2006b. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron J. 98: 1128–1136.
Bordovsky, D.G., M. Choudhary, and C. J. Gerard. 1998. Tillage Effects on Grain Sorghum and Wheat Yields in the Texas Rolling Plains. Agron. J. 90: 638–643.
Bordovsky, D.G., M. Choudhary, and C. J. Gerard. 1999. Effect of tillage, cropping, and residue management on soil properties in the Texas Rolling Plains. Soil Sci. 164 (5): 331–340.
Cambardella, C.A., and E. T. Elliot. 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56: 777–783.
Carter, M.R. 2002. Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions that Maintain Soil Functions. Agron. J. 94: 38–47.
Carter, M.R., E. G. Gregorich, D. A. Angers, R. G. Donald, and M. A. Bolinder. 1998.
Organic C and N storage, and organic C fractions in adjacent cultivated and forested soils of eastern Canada. Soil Tillage Res. 47: 253–261.
Chen, S., X. Zhang, L. Shao, H. Sun, J. Niu, and X. Liu, 2020. Effects of straw and manure management on soil and crop performance in North China Plain. CATENA 187, 104359. https://doi.org/10.1016/j.catena.2019.104359.
Clapp, C.E., R. R. Allmaras, M. F. Layese, D. R. Linden, and R. H. Dowdy. 2000. Soil organic carbon and 13-C abundance as related to tillage, crop residue, and nitrogen fertilizer under continuous corn management in Minnesota. Soil Tillage Res. 55: 127–142.
Claassen, M.M., and R. H. Shaw. 1970. Water deficits effects on corn. II. Grain components. Agron. J. 62: 652–655.
Crutzen, P.J., A. R. Mosier, K. A. Smith, and W. Winiwater. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8: 389–395.
Curtin, D., and P. M. Fraser. 2003. Soil organic matter as influenced by straw management practices and inclusion of grass and clover seed crops in cereal rotations. Aust J Soil Res. 41 (1): 65–106.
Czymmek, K., Q. Ketterings, M. Ros, M. Battaglia, S. Cela, S. Crittenden, D. Gates, T. Walter, S. Latessa, L. Klaiber, and G. Albrecht. 2020. The New York Phosphorus Index 2.0. Agronomy Fact Sheet Series. Fact Sheet #110. Cornell University Cooperative Extension.
Dam, R.F., B. B. Mehdi, M.S.E. Burgess, C. A. Madramootoo, G. R. Mehuys, and I. R. Callum. 2005. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 84 (1): 41–53.
Diatta, A.A., W. E. Thomason, O. Abaye, T. L. Thompson, M. L. Battaglia, L. J. Vaughan, M. Lo, and J.F.D.C Leme. 2020. Assessment of nitrogen fixation by mungbean genotypes in different soil extures using 15N natural abundance method. J. Soil Sci. Plant Nut. doi.org/10.1007/s42729–020–00290–2
Dendooven, L., L. Patiсo-Zъсiga, N. Verhulst, M. Luna-Guido, R. Marsch, and B. Govaerts. 2012. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agric. Ecosyst. Environ. 152: 50–58.
Dolan, M.S., C. E. Clapp, R. R. Almaras, J. M. Baker, and J.A.E. Molina. 2006. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil and Tillage Res. 89: 221–231.
Doran, J.W., W. W. Wilhelm, and J. F. Power. 1984. Crop residue removal and soil productivity with no-till corn, sorghum, and soybean. Soil Sci. Soc. Am. J. 48: 640–645.
EPA. 2017. Greenhouse Gas Emissions. Understanding Global Warming Potentials. United States Environmental Protection Agency. At: https://www.epa.gov/ghgemissions/understandingglobal-warming-potentials (updated: 02/14/17; accessed: 8/12/2020).
Fontaine, D., J. Eriksen, and P. Sшrensen, 2020. Cover crop and cereal straw management influence the residual nitrogen effect. Eur. J. Agron. 118, 126100. https://doi.org/10.1016/j.eja.2020.126100
Franzluebbers, A.J. 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 66: 197–205.
Gale, W.J., and C. A. Cambardella. 1998. Carbon Dynamics of Surface Residue– and Root-derived Organic Matter under Simulated No-till. Soil Sci. Soc. Am. J. 64: 190–195.
Gallaher, P., M. Dikemann, J. Fritz, E. Wailes, W. Gauther, and H, Shapouri. 2003. Biomass from crop residues: cost and supply estimates. USDA, Office of the Chief Economist, Energy Policy and New Uses. Agricultural economic report 819. USDA, Washington, DC. At: http://ageconsearch.umn.edu/bitstream/34063/1/ae030819.pdf (accessed 8/12/2020).
Gentile, R., B. Vanlauwe, P. Chivenge, and J. Six. 2008. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol. Biochem. 40: 2375–2384.
Graham, R.L., R. Nelson, J. Sheenan, R. D. Perlack, and L. L. Wright. 2007. Current and potential U.S. corn stover supplies. Agron. J. 99: 1–11.
Grande, J.D., K. Karthikeyan, P. S. Miller, and J. M. Powell. 2005. Corn residue level and manure application timing effects on phosphorus losses in runoff. J. Environ. Qual. 34:1620–1631.
Gregorich, E.G., and H. H. Janzen. 1996. Storage of soil carbon in the light fraction and macroorganic matter. p. 167–190. In M. R. Carter and B. A. Stewart (ed.) Structure and organic matter storage in agricultural soils. Lewis Publ., CRC Press, Boca Raton, FL.
Guan, X.-K., L. Wei, N. C. Turner, S.-C. Ma, M.-D. Yang, T.-C. Wang, 2020. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J. Clean. Prod. 250, 119514.
Hall, A.J., J. H. Lemcoff, and N. Trapani. 1981. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants. Maydica 26: 19–38.
Hammerbeck, A.L., S. J. Stetson, S. L. Osborne, T. E. Schumacher, and J. L. Pikul, Jr. 2012. Corn Residue Removal Impact on Soil Aggregates in a No-Till Corn/Soybean Rotation. Soil Sci. Soc. Am. J. 76: 1390–1398.
Houghton, R. A. 2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35: 313–347.
Huang, Y., J. Zou, X. Zheng, Y. Wang, and X. Xu. 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biol. Biochem. 36: 973–981.
Huggins, D.R., C. E. Clapp, R. R. Allmaras, J. A. Lamb, and M. F. Layese. 1998. Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance. Soil Sci. Soc. Am. J. 62: 195–203.
Jin, V.L., J. M. Baker, J.M.F. Johnson, D. L. Karlen, R. M. Lehman, S. L. Osborne, T. J. Sauer, D. E. Stott, G. E. Varvel, R. T. Venterea, M. R. Schmer, and B. J. Wienhold. 2014. Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. BioEnergy Res. 7: 517–527.
Johnson, J.M.F., V. Acosta-Martinez, C. A. Cambardella, and N. W. Barbour. 2013. Crop and soil responses to using corn stover as a bioenergy feedstock: observations from the Northern US Corn Belt. Agric. J. 3: 72–89.
Johnson, P.A., and B. J. Chamber. 1996. Effects of husbandry on soil organic matter. Soil Use Manage. 13: 102–103.
Kan, Z.-R., C. He, Q.-Y. Liu, B.-Y. Liu, A. L. Virk, J.-Y. Qi, X. Zhao, H.-L. Zhang, 2020. Carbon mineralization and its temperature sensitivity under no-till and straw returning in a wheatmaize cropping system. Geoderma 377, 114610. https://doi.org/10.1016/j.geoderma.2020.114610.
Karlen, D.L., P. G. Hunt, and R. B. Campbell. 1984. Crop residue removal effects on corn yield and fertility of a Norfolk sandy loam. Soil Sc. Soc. Am. J. 48: 868–872.
Karlen, D.L., N. C. Wollenhaupt, D. C. Erbach, E. C. Berry, J. B. Swan, N. S. Eash, and J. L. Jordahl. 1994. Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 31:149–167.
Kendall, J.R.A., D. S. Long, H. P. Collins, F. J. Pierce, A. Chatterjee, J. L. Smith, and S. L. Young. 2015. Soil carbon dynamics of transition to Pacific Northwest cellulosic ethanol feedstock production. Soil Sci. Soc. Am. J. 79:272–281.
Kenney, I.T. 2011. Regional assessment of short-term impacts of corn stover removal for bioenergy on soil quality and crop production. MSc. thesis, Kansas State University, Manhattan, KS.
Ketterings, Q., and K. Czymmek. 2007. Removal of Phosphorus by Field Crops. Agronomy Fact Sheet Series. Fact Sheet #28. Cornell University Cooperative Extension.
Kim, S., and B. E. Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 26: 361–375.
Kim, S., B. E. Dale, and R. Jenkins. 2009. Life cycle assessment of corn grain and corn stover in the United States. Int. J. Life Cycle Assess. 14: 160–174.
Kumar, P., L. Lai, M. L. Battaglia, S. Kumar, V. Owens, J. Fike, J. Galbraith, C. O. Hong, R. Faris, R.
Crawford, J. Crawford, J. Hansen, H. Mayton., and D. Viands. 2019. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. CATENA 180: 183–193.
Kumar, S., L. Lai, P. Kumar, Y.M.V. Feliciano, M. L. Battaglia, C. O. Hong, V. N. Owens, J. Fike, R.
Farris, and J. Galbraith. 2019. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 111(3): 1046–1059.
Larson, W.E., Y. B. Morachan, C. E. Clapp, and W. H. Pierre. 1972. Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64: 204–209.
Lenka, N.K., and R. Lal. 2013. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126: 78–89.
Li, S., X. Li, W. Zhu, J. Chen, X. Tian, and J. Shi, 2019. Does Straw Return Strategy Influence Soil Carbon Sequestration and Labile Fractions? Agron. J. 111: 897–906. https://doi.org/10.2134/agronj2018.08.0484.
Liang, B.C., E. G. Gregorich, A. F. MacKenzie, M. Schnitzer, R. P. Voroney, C. M. Monreal, and R. P. Beyaert. 1998. Retention and turnover of corn residue carbon in some eastern Canadian soils. Soil Sci. Soc. Am. J. 62: 1361–1366.
Lin, S., J. Iqbal, R. Hu, M. Shaaban, J. Cai, and X. Chen. 2013. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-tonitrogen ratios: a case study in central China. Arch. Environ. Contam. Toxicol. 65:183–192.
Linden, D.R., C. E. Clapp, and R. H. Dowdy. 2000. Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res. 56:167–174.
Lindstrom, M.J. 1986. Effects of residue harvesting on water runoff, soil erosion and nutrient loss. Agric. Ecosyst. Environ. 16: 103–112.
Lindstrom, M.J., W. B. Voorhees, and C. A. Onstad, 1984. Tillage systems and residue cover effects on infiltration in northwestern Corn Belt soils. Journal of Soil and Water Conservation Jan.-Feb.: 64–68.
Mann, L., V. Tolbert, and J. Cushman, 2002. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. Environ. 89: 149–166.
McAloon, A., F. Taylor, W. Yee, K. Ibsen, and R. Wooley. 2000. Determining the cost of producing ethanol from cornstarch and lignocellulosic feedstocks. Tech. Rep. NREL/TP-580–28893. Natl. Renewable Energy Lab., Golden, CO. At: https://www.nrel.gov/docs/fy01osti/28893.pdf (accessed: 8/12/2020).
Moebious-Clune, B.N., H.M. van Es, O. J. Idowo, R. R. Schindelbeck, D. J. MoebiousClune, D. W. Wolfe, G. S. Abawi, J. E. Thies, B. K. Gugino, and R. Lucey. 2008. Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sc. Soc. Am. J. 72: 960–969.
Morachan, Y.B., W. C. Moldenhauer, and W. E. Larson. 1972. Effects of increasing amounts of organic residues on continuous corn: I. Yields and soil physical properties. Agron. J. 64:199–203.
NeSmith, D.S., and J. T. Ritchie. 1992. Short- and long-term responses of corn to a preanthesis soil water deficit. Agron. J. 84: 107–113.
Nicholson, F.A., B. J. Chambers, A. R. Mills, and P. J. Strachan. 1997. Effects of repeated straw incorporation on crop fertilizer nitrogen requirements, soil mineral nitrogen and nitrate leaching losses. Soil Use Management 13: 136–142.
Power, J.F. and J. W. Doran, 1988. Role of crop residue management in nitrogen cycling and use. In Cropping Strategies for Efficient Use of Water and Nitrogen. Ed. Hargrove et al., pp 101–113. ASA Spec. Publ. 51, ASA CSA and SSSA, Madison, WI
Power, J.F., J. W. Doran, and W. W. Wilhelm. 1986. Crop residue effects on soil environment anddryland maize and soybean production. Soil Tillage Res. 8: 101–111.
Power, J.F., P. T. Koerner, J. W. Doran, and W. W. Wilhelm. 1998. Residual effects of crop residues on grain production and selected soil properties. Soil Sci. Soc. AM. J. 62: 1393–1397.
Raffa, D.W., A. Bogdanski, O. Dubois, and P. Tittonell. 2014. Take it or Leave it? Towards a decision support tool on sustainable crop residue use. Part 1: Soil management. Environment and natural resources management working paper No. 61 Energy. 110 p. Food and Agriculture Organization of the United Nations. Rome, Italy. At: http://www.fao.org/3/a-i4120e.pdf (accessed: 8/12/2020).
Schneider, E. C., and S. C. Gupta. 1985. Corn Emergence as Influenced by Soil Temperature, Matric Potential, and Aggregate Size Distribution1. Soil Sci. Soc. Am. J. 49: 415–422.
Sequeira, C.H., and M. M. Alley. 2011. Soil organic matter fractions as indices of soil quality changes. Soil Sci. Soc. Am. J. 75: 1766–1773.
Sequeira, C.H., M. M. Alley, and B. P. Jones. 2011. Evaluation of potentially labile soil organic carbon and nitrogen fractionation procedures. Soil Biol. Biochem. 43: 438–444.
Shan, J., and X. Yan. 2013. Effects of crop residue returning on nitrous oxide emissions inagricultural soils. Atmos. Environ. 71:170–175.
Sharma, B., C. Larroche, and C.-G. Dussap, 2020. Comprehensive assessment of 2G bioethanol production. Bioresour. Technol. 313: 123630. https://doi.org/10.1016/j.biortech.2020.123630
Sindelar, A.J. 2012. Stover, tillage, and nitrogen management in continuous corn for grain, ethanol, and soil carbon. Ph.D. diss., University of Minnesota, Minneapolis, MN.
Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between(micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79: 7–31.
Spargo, J.T., M. A. Cavigelli, M. M. Alley, J. E. Maul, J. S. Buyer, C. H. Sequeira and R. F. Follet. 2012. Changes in soil organic carbon and nitrogen fractions with duration of notillage management. Soil Sci. Soc. Am. J. 76: 1624–1633.
Su, Y., M. Yu, H. Xi, J. Lv, Z. Ma, C. Kou, and A. Shen, 2020. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 10: 6360. https://doi.org/10.1038/s41598–020–63409–6.
Susser, J.R., S. L. Pelini, and M. N. Weintraub, 2020. Can we reduce phosphorus runoff from agricultural fields by stimulating soil biota? J. Environ. Qual. 49: 933–944. https://doi.org/10.1002/jeq2.20104.
Swan, J.B., R. L. Higgs, T. B. Bailey, N. C. Wollenhaupt, W. L. Paulson, and A. E. Peterson. 1994. Surface Residue and In-Row Treatment Effects on Long-Term No-Tillage Continuous Corn. Agron. J. 86: 711–718.
Swan, J.B., E. C. Schneider, J. F. Moncrief, W. H. Paulson, and A. E. Peterson. 1987. Estimating Corn Growth, Yield, and Grain Moisture from Air Growing Degree Days and Residue Cover. Agron. J. 79: 53–60.
Tarkalson, D.D., B. Brown, H. Kok, and D. L. Bjorneberg. 2009. Impact of Removing Straw from Wheat and Barley Fields: A Literature Review. Better crops 93 (3): 17–19.
Tenenbaum, D.J. 2008. Food vs. Fuel: Diversion of Crops Could Cause More Hunger. Environ. Health Persperct. 116(6): A254–A257.
Thompson, P.B. 2012. The Agricultural Ethics of Biofuels: The Food vs. Fuel Debate. Agriculture J. 2: 339–58. Tiedje, J.M., A. J. Sexstone, T. B. Parkin, N. P. Revsbech,, and D. R. Shelton, 1984. Anaerobic processes in soil. Plant and Soil 76: 197–212.
Undersander, D.J., and C. Reiger. 1985. Effect of wheat residue management on continuous production of irrigated winter wheat. Agron J. 77: 508–511.
U. S. Department of Energy. 2011. U. S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R. D. Perlack and B. J. Stokes (Leads), ORNL/TM-2011/224.
Oak Ridge National Laboratory, Oak Ridge, TN. 227p. At: http://www.eesi.org/files/billion_ton_update.pdf (accessed: 8/12/2020).
Vetsch, J.A., and G. W. Randall. 2002. Corn production as affected by tillage system and starter fertilizer. Agron. J. 94: 532–540.
Von Cossel, M., I. Lewandowski, B. Elbersen, I. Staritsky, M. Van Eupen, Y. Iqbal, S. Mantel, D. Scordia, G. Testa, S. L. Cosentino, O. Maliarenko, I. Eleftheriadis, F. Zanetti, A. Monti, D. Lazdina, S. Neimane, I. Lamy, L. Ciadamiro, M. Sanz, J. E. Carrasco, P. Ciria, I. McCallum, L. M. Trindade, E. N. Van Loo, W. Elbersen, A. L. Fernando, E. G. Papazoglou, and E. Alexopoulou, 2019. Marginal agricultural land low-input systems for biomass production. Energies 12: 3123. https://doi.org/10.3390/en12163123
Walsh, M.E., R. L. Perlack, A. Turhollow, D.G. de la Torre Ugarte, D. A. Becker, R. L. Graham, S. E. Slinsky, and D. E. Ray. 2000. Biomass feedstock availability in the United States: 1999 state level analysis. Oak Ridge National Lab., Oak Ridge, TN. At: https://www.nrc.gov/docs/ML0719/ML071930137.pdf (accessed 8/12/2020).
Wilhelm, W.W., J. W. Doran, and J. F. Power. 1986. Corn and soybean yield response to crop residue management under no-tillage production systems. Agron. J. 78:184–189.
Wilhelm, W.W., J. M. Johnson, J. L. Hatfield, W. B. Voorhees, and D. R. Linden. 2004. Crop and soil productivity response to corn residue removal: a literature review. Agron. J. 96: 1–17.
Yuan, M., K. D. Greer, E. D. Nafziger, M. B. Villamil, and C. M. Pittelkow, 2018. Soil N2O emissionsas affected by long-term residue removal and no-till practices in continuous corn. GCB Bioenergy 10: 972–985. https://doi.org/10.1111/gcbb.12564.
Zhang, L., X. Chen, Y. Xu, M. Jin, X. Ye, H. Gao, W. Chu, J. Mao, and M. L. Thompson, 2020. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Sci. Rep. 10, 11318. https://doi.org/10.1038/s41598–020–68163–3.
Wilhelm, W.W., J.M.F. Johnson, D. L. Karlen, and D. T. Lightle. 2007. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 99(6): 1665–1667.