Застосування спектрофотометрів для визначення стану біоенергетичних культур
DOI:
https://doi.org/10.47414/be.2025.No1.pp15-22Ключові слова:
біопаливо, міскантус гігантський, просо прутоподібне, тополя чорна, вербаАнотація
Мета. Визначити можливості фотометра до встановлення рівня забезпеченості біоенергетичних культур. Методи. Польові дослідження виконували в умовах зони нестійкого зволоження Правобережного Лісостепу України на дослідному полі Інституту біоенергетичних культур і цукрових буряків НААН України (с. Ксаверівка друга, Київська область) у 2022–2024 роках. Результати. Визначено що розрахунок показників флюоресценції хлорофілу є швидким і надійним способом ідентифікації широкого спектру видів стресу як у сільськогосподарських культур, так і в біоенергетичних. Однак, важливим питанням точної діагностики стану рослин залишається правильний підбір вимірюваних показників, оскільки широкий спектр параметрів вимірювань потребує додаткової кваліфікації. Досліджено, що за відсутності стресів у біоенергетичних культур стан фотосистеми доволі сильно (показник Fv/Fm) залежить від доступності рослинами макроелементів живлення, особливо азоту, що є біогенним елементом. При цьому між вмістом азоту в ґрунті та показниками фотосистеми рослин існує пряма дуже сильна кореляційна залежність (r = 0,98), а між вмістом фосфору в ґрунті та станом фотосистеми спостерігається зворотна значна кореляційна залежність (r = –0,67). До- слідження з визначення станів біоенергетичних рослин варто продовжити з використанням умов контрольованого клімату, як найбільш точного для виокремлення окремих станів — стресів від нестачі або надлишку фак- торів впливу (погодних умов, елементів живлення, тощо).
Посилання
Adams M., Norvell A., Philpot D. and Peverly J. (2000). Spectral detection of Micronutrient Deficiency in ‘Bragg’ Soybean. Agronomy J., 92, 261–268.
Adams W.W. and Demmig-Adams B. (2004). Chlorophyll Fluorescence as a tool to Monitor Plant Response to the Environment. From Chapter 22, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, 598–599.
Aldea M., Hamilton J., Joseph P., Resti J., Zangerl A., Berenbaum M., Frank T. and DeLucia E. (2006). Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia, 149(2), 221–232.
Arrobas M., Aguiar P. and Rodrigues M. A. (2016). A comparison of a pasture ley with a maize monoculture on the soil fertility and nutrient release in the succeeding crop. Journal Archives of Agronomy and Soil Science, 62(6).
Baker N.R., Rosenquist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, Journal of Experimental Botany, 55(403), 1607–1621.
Baker N.R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol, 59, 89–113.
Biscaro G.A., Goulart S. A.R., Soratto R. P., Freitas N. A.F., Motomiya A. V.A. and Filho G. C.C. (2009). Molybdenum applied to seeds and side dressing nitrogen on irrigated common bean in cerrado soil. Ciência e Agrotecnologia, 33(5) http://dx.doi.org/10.1590/S1413–70542009000500012 CIÊNCIAS AGRÁRIAS
Burke J. (2007). Evaluation of Source Leaf Responses to Water- Deficit Stresses in Cotton Using a Novel Stress Bioassay. Plant Physiology, 143, 108–121.
Burke J., Franks C. D. Burow G. and Xin, Z. (2010). Selection system for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm. Agronomy Journal, 102, 1118–1122.
Buschmann C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Res., 92, 261–271.
Buschmann C. (2008). Recommended taking multiple measurements per leaf to find potential infection locations as a substitute for fluorescence leaf imaging. Botanik 2, Universität Karlsruhe (TH), 76128 Karlsruhe (Germany).
Butts T., Miller J. J., Pruitt D. J., Vieira B. C., Oliveira M. C., Ramirez II.S. and Lindquist J. L. (2017). Light Quality Effect on Corn Growthas Influenced by Weed Species and Nitrogen Rate. Journal of Agricultural Science Home, 9(1).
Cavender-Bares J. and Fakhri A. (2004). From Leaves to Ecosystem: Using Chlorophyll А to Assess Photosynthesis and Plant Function in Ecological Studies. From Chapter 29, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, рр. 746–747.
Cazzaniga S., Osto L. D., Kong S-G., Wada M. and Bassi R. (2013). Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. The Plant Journal, 76(4), 568–579. DOI: 10.1111/tpj.12314
Cerovic Z, Sampson G., Morales F., Tremblay N. and Moya I. (1999). Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie, 19, 543–578.
Cerovic Z., Goulas Y., Gorbunov M., Britantais J-M., Camenen L. and Moya I. (1996). Fluoresensing of water stress in plants. Diurnal changes of mean lifetime and yield of chlorophyll fluorescence, measured simultaneously at distance with a Lidar and modified PAM-fluorometer, in maize, sugar beet and Kalanchoe. Remote Sens Environment, 58, 311–321
Cheng L., Fuchigami L. and Breen P. (2001). The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. Journal of Experimental Botany, 52(362), 1865–1872
Christensen M., Teicher H. and Streibig J. (2003). Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag. Sci., 59, 1303–1310.
Christensen R.C., Hopkins B. G., Jolley V. D., Olson K. M., Haskell C. M., Chariton N. J. and Webb B. L. (2012). Elemental sulfur impregnated with iron as a fertilizer source for Kentucky bluegrass. Journal of Plant Nutrition. 1878–1895. doi: 10.1080/01904167.2012.706684
Clark M.J. and Zheng Y. (2017). Effect of Top-dressed Controlled- release Fertilizer Rates on Nursery Crop Quality and Growth and Growing Substrate Nutrient Status in the Niagara Region, Ontario, Canada. HortScience, 52(1), 167–173. doi: 10.21273/HORTSCI11309–16
D’Attilio D. (2014). Optimizing nitrogen fertilization practices under intensive vineyard cover cropping floor management systems. Virginia Tech, https://vtechworks.lib.vt.edu/handle/10919/5661
da Silva J. A. and Arrabaca M.C (2004). Photosynthesis in the water◻stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, 121(3), 409–420. doi: 10.1111/j.1399–3054.2004.00328.x
Dall’Osto L., Cazzaniga S., Wada M. and Bassi R. (2014). On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil. Trans. R. Soc., 2(25), 369.
Duraes F., Gama E., Magalhaes P., Marriel I., Casela C., Oliveira А., Luchiari A. and Shanahan J. (2001). The usefulness of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminum toxicity tolerance, and N use efficiency in Maize. Seventh Eastern and Southern Africa Regional Maize Conference 11th — 15th February, 2001. pp. 356–360.
Earl H. and Said Ennahli S. (2004). Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynthesis Research, 82, 177–186.
Flexas J., Briantais M. J., Cerovic Z., Medrano H. and Moya I. (2000). Steady-state and maximum chlorophyll fluorescence responses to water stress in grape vine leaves: A new remote sensing system. Remote Sensing Environment, 73, 283–270.
Flexas J., Escalona J. M. and Medrano H. (1999). Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell & Environment, 22(1), 39–48.
Flexas J., Escalona J. M., Evain S., Gulías J., Moya I., Osmond C. B. and Medrano H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114(2), 231–240.
Fonteyne S., Lootens P. and Reheul D. (2017). Evaluation of chilling and frost stress tolerance in miscanthus: from winter survival and early-season growth to final biomass yield. Gent: UGent.
Fryer M.J., Andrews J. R., Oxborough K., Blowers D. A. and Baker N. E. (1998). Relationship between CO2 Assimilation, Photosynthetic Electron Transport, and Active O2 Metabolism in Leaves of Maize in the Field during Periods of Low Temperature. Plant Physiol, 116, 571–580.
Gitelson A.A., Buschmann C. and Lichtenthaler H. K. (1999). The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of Chlorophyll Content in Plants. Remote Sens. Enviro, 69, 296–302.
Haldimann P. and Feller U. (2004). Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant, Cell & Environment, 27, 1169–1183. https://doi.org/10.1111/j.1365– 3040.2004.01222.x
Haldimann P. and Tsimilli-Michael M. (2002). Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloroplasts. Photosynth Res, 74(1), 37–50. doi: 10.1023/A:1020884500821.
Hall DE., Macgregor K. B., Nijsse J. and Bown AW. (2004). Footsteps from insect larvae damage leaf surfaces and initiate rapid responses. European Journal of Plant Pathology, 110(4), 441–447.
Hermans C., Johnson G. N., Strasser R. J. and Verbruggen N. (2004). Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta, 220, 344–355.
Jiang C-D., Gao H-Y. and Zou Q. (2006). Changes of Donor and Acceptor Side in Photosystem 2 Complex Induced by Iron Deficiency in Attached Soybean and Maize Leaves. Photosynthetica, 41(2), 267–271.
Jones G.B, Alpuerto J. B., Tracy B. F. and Fukao T. (2017). Physiological Effect of Cutting Height and High Temperature on Regrowth Vigor in Orchard grass. Front. Plant Sci., 19(8). https://doi.org/10.3389/ fpls.2017.00805
Joshi M.K. and Mohanty P. (2004). Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou G. C. (eds.): Chlorophyll Fluorescence: A Signature of Photosynthesis Advances in Photosynthesis and Respiration. Springer, Dordrecht: рр. 637–661.
Kan C–C., Chung T-Y., Juo Y-A. and Hsieh M-H. (2015). Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. Kan et al. BMC Genomics, 16:731 doi 10.1186/s12864–015–1892–7
Kastori R., Plesnicar M., Pankovic D. and Sakac, Z. (1995). Photosynthesis, chlorophyll fluorescence and soluble carbohydrates in sunflower leaves as affected by boron deficiency. Journal of plant nutrition, 18(9).
Kim Y., Seo C-W., Khan A.L, Mun K.B-G., Shahzad R., Ko J-W., Yun B-W. and In-Jung Lee I-J. (2018). Ethylene mitigates waterlogging stress by regulating glutathione. bioRxiv. doi: https://doi.org/10.1101/252312
Kramer D.M., Johnson G., Kiirats O. and Edwards G. (2004). New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209–218.
Lanaras T., Moustakas M., Symeonidis L., Diamantoglou S. and Karataglis S. (1993). Plant metal content, growth responses and some photosynthetic measurements on field — cultivated wheat growing on ore bodies enriched in Cu. Physiol. Plant, 88, 307–314.
Lazarević B., Poljak M., Ćosić T., Horvat T. and Karažija T. (2014). Evaluation of Soil and Plant Nitrogen Tests in Potato (Solanum tuberosum L.) Production. Agriculturae Conspectus Scientificus, 79(1), https://hrcak.srce. hr/120759
Lichtenthaler H.K. and Babani F. (2004). Light Adaption and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity. From Chapter 28,“Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands.
Lichtenthaler H.K. and Burkart S. (1999). Photosynthesis and high light stress. Bulg. J. Plant Physiol., 25(3–4), 3–16
Linn A.vI., Zeller A.vK., Pfündel E. E. and Gerhards R. (2021). Features and applications of a field imaging chlorophyll fluorometer to measure stress in agricultural plants. Precision Agric 22, 947–963. https://doi. org/10.1007/s11119–020–09767–7
Lohaus G., Heldt H. and Osmond C. B. (2000). Infection with phloem limited Abutilon mosaic virus causes localized carbohydrate accumulation in leaves of Abutilon striatum: Relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Bioll., 2, 161–167.
Loriaux S.D., Burns R. A., Welles J. M., McDermitt D.K. and Genty B. (2006). Determination of maximal chlorophyll fluorescence using a multiphase single flash of sub-saturating intensity. Abstract No.P13011. August, 2006. American Society of Plant Biologists Annual Meetings, Boston, MA.
MacIntyre H.L., Sharkey T. D. and Geider R. (1997). Activation and deactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in three marine microalgae. Photosynthesis Research, 51, 93–106.
MacIntyre H.L. and Geider R. J. (1996). Regulation of Rubisco activity and its potential effect on photosynthesis during mixing in a turbid estuary. Mar. Ecol. Prog. Ser., 144, 247–264.
MacIntyre H.L., Geider R. J. and McKay R.M. (1996). Photosynthesis and regulation of Rubisco activity in net phytoplankton from Delaware Bay. J. Phycol., 32, 718–732.
Major J.E., Mosseler A. and Malcolm J. W. (2023). Chlorophyll pigmentand leaf macronutrient trait variation of four Salix species in elevated CO2, under soil moisture stress and fertilization treatments. Forests, 14, 42. https://doi.org/10.3390/f14010042
Malinská H., Pidlisnyuk V., Nebeská D., Erol A., Medžová A. and Trögl J. (2020). Physiological response of Miscanthus x giganteus to plant growth regulators in nutritionally poor soil. Plants, 9(2): E194. DOI: 10.3390/ plants9020194
Marsh B.H. (2014). Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley World Academy of Science, Engineering and Technology. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 8(10).
Martos S., Gallego B., Sáez L., López-Alvarado J., Cabot C. and Poschenrieder C. (2016). Characterization of zinc and cadmium hyperaccumulation in three Noccaea (Brassicaceae) populations from non- metalliferous sites in the eastern Pyrenees. Frontiers of Plant Science, 7(128), doi:103389/fpls.2016.00128
Moradi F. and Ismail A. (2007). Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Annals of Botany, 99(6), 1161– 1173
Moriles J., Hansen S., Horvath D. P., Reicks G., Clay D. E. and Clay S. A., (2012). Microarray and Growth Analyses Identify Differences and Similarities of Early Corn Response to Weeds, Shade, and Nitrogen Stress. Weed Science of America, 60(2), 158–166.
Muller P., Xiao-Ping L. and Niyogi K. (2001). Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology, 125, 1558– 1556.
Nedbal L. and Whitmarsh J. (2004). Chlorophyll Fluorescence Imaging of Leaves and Fruits From Chapter 14, “Chlorophyll a Fluorescence a Signature of Photosynthesis”, edited by George Papaqeorgiou and Govindjee, published by Springer 2004, PO Box 17, 3300 AA Dordrecht, The Netherlands, pр. 389–407.
Nedbal L., Soukupova J., Whitmarsh J. and Trtilek M. (2000). Post harvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica, 38, 571–579.
Negash L., Kim H.-Y. and Choi H.-L. (2019). Emerging UAV Applications in Agriculture,» 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Korea (South), pp. 254–257, doi: 10.1109/RITAPP.2019.8932853.
Netondo G., Onyango J. and Beck E. (2004). Sorghum and Salinity I. Response of Growth, Water Relations, and Ion Accumulation to NaCl Salinity. Crop Science, 44, 797–805.